If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x+50-5x^2=0
a = -5; b = 15; c = +50;
Δ = b2-4ac
Δ = 152-4·(-5)·50
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-35}{2*-5}=\frac{-50}{-10} =+5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+35}{2*-5}=\frac{20}{-10} =-2 $
| 11/3*x=2/9 | | 1/3x-5=2/5x+12 | | 1/2h(17)=119 | | e-12=-3 | | (6x+7)=(x+3) | | 39-w=221 | | 6x+7(4x-21)=159 | | -3c–12=-5+c | | X2-5x+5=0 | | 3x/12=9/4 | | 6x+7(4x-12)=159 | | 3x/12=11/4 | | 2/3x-7=9 | | 8+y=32/3 | | (5/7)+(5/2)+(11/12)=a | | f(2)=4(2)-5 | | 1/3•w=12 | | 10-2(5x-1)=6x-20 | | 8+y=31/2 | | 6x+4(2x-6)=46 | | 3n–5=7n+11 | | 42=18+x | | 7(3-u)+u+2u=5 | | X+2x+3(2x)=360 | | 2x+2(6x-18)=34 | | 2(x+4)=3(x+7)-1 | | (2x-8)(3x+6)=0 | | 3x*4+10=5x | | 3g-5=-8(6+5g) | | 0.5x-3=0.18x+5 | | 1/(x+3)+1/(x^2+5x+6)=0 | | -3(5+m)=-36 |